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Types of problem

1. ‘Information’” as a connector
« Many ‘agents’ with individual propensities

— Abilities, inclinations, aversions, strategies
* Not necessarily any direct interaction

« Respond to ‘common information’
Available equally to all
Some generated by the collection of agents (endogenous)
Some generated by external sources (exogenous)
« Leads to effective interaction
c.f. bosons in QFT or maybe

I




2. Networks retrieving information by queries

« Minimise ‘time’/ # steps to find someone with the answer

— Scale-free networks
« Search N nodes in InN steps

* Dynamical networks
— Growing
* Much studied
— Networks under churn

* Nodes constantly entering and leaving
« Topological transitions



1. Information as connector

« Many-body
* Quenched disorder

— Different ‘agents’ ~ different abilities,strategies etc.
 Often frustration/competition

« Dynamical
« Cooperative behaviour?
* Transitions?
« Complex?
« Models

« Methodology
« Range-free information
« Some solutions
* Some concepts



Stockmarket
Many speculators; buy low, sell high

&

Information Consequence

Buy & sell
(Dynamics I)

Learn from
Experience ?
(Dynamics Il)

Common informatior
(Mean field)

Different strategies
(Disorder)

Not all can win (Frustration)



Minority game

N agents 2 choices
Aim to be in minority

Individual strategies == Collective consequence
act on common in turn

preferences modified by experience

]

Correlated behaviour through common purpose
Phase transitions, fruitful irrationality, ‘non-ergodicity’




Original MG model

(Challet & Zhang ‘97)

* Information: Minority choice last m steps

« Strategies Boolean functions
— (few each, random quenched, different for each agent)

* Points: decide which strategy to use (9
updated by performance (/)
best strategy used ()

Simplify to 2 strategies per agent



‘Volatility

a ‘natural’ relevant macroscopic observable

Standard deviation of #'buy’ versus #'sell
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eCorrelations

«Scaling parameters:
a=2"/N , 6/VN

*Phase transition:a
minimum in volatility




‘Volatility

a ‘natural’ relevant macroscopic observable

Standard deviation of #'buy’ versus #'sell
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Ergodicity-breaking

Generalized batch model

Phase transition
a=u

O—oO0 tabula rasa start
® @ biased start

Minimum in volatility
G &

Random Ergodic/ non-ergodic

Recall: o =27 /N

o =D/N

Non- :
ergodic ” Ergodic




MG with ‘random information’

Strategies: - Information:

quenched- stochastically

random vectors random vectors
in D dimensions in D dimensions

R eR® * I(t)e R”

1/2

o/N

Individual ‘bids’ Average bid

random

bl,a (l‘) — iélaj(l‘) case value

Hla@t)y=N"Yb ()

* denotes used

O \\‘\\‘\- L L T R R R | L L T R R R
10" 10° 10

D/N

Points update: | P“(t+1) = P“(t) — b/ (t)a(t)‘




Difference equation

» Relative point-score: p,(t)=P'(t)— P*(t)

+ Dynamics: 2t +D=p,0)-N" Y[R IOWT0.E]

» Strategy vectors: g £=R'+R’



Coarse-grained time-average over [(t)

J

Effective interaction between agents
H = Z JijSiSj + Z hisi ‘Range-free’
] i

v v o Batch
]l-j - Zé:, é:,- > h,- = ij é:, equivalent to

updating points only
after time O(N);
averaging over

‘Equation Of mOtiOn, ‘common information’
pt+)=p,O)=h=p J;sgnp,(t)
= p,(t)—dH / 9s,

{s;=sgn p; (1)}



c./. Anti-Hopfield in field

Effective Hamiltonian

H = Z]ijsisj + Zhl.sl.
ij I

i j !
p I jou
c.f. Hopfield model Repellors Recall

J,=-2.8¢ 7. & =R R’
|

~{h =0} = {R'=—R?
Attractors t } R, )

Anti-correlated strategies



Full macrodynamics

equilibrium or non-equilibrium

Starting point: generating functional

Z = jH dp(OW (B(t+1)| (1)) By (B(0))

Updates: p,(r+1)=p,)—h =Y. J;senp,)] — W
Batch: hl- = N_lzjci,a_)j ; ‘]ij = N_ICE'EJ

(Coolen & Heimel)



Micro — Macro

* Introduce auxiliary ‘macrofields’ (x 1)
1= DC(t,t,,5(Ct,t) =N p,(1)p, (1) e

« Exponentiate delta functions e.g.l

jd@(r, t)exp{—iC(t,t"[C(t,t)~ N Z p; (@) p,(t)]}

* Disorder average (over strategies)
« Substitute for many microvariables
« (Gaussian in explicit microvariables: integrate out



Micro — Macro

Now macrovariables only

7 = j [DCDCI[DKDK[DLDL]exp{N[¥ +® + Q]}
C(t,t)=N"D s5.(1)s,(t")

K(t,t)=N"> s5.(t)p,t"); p~0/0s
L(t,t)=N"> p,0)p,(1), etc.

Large M extremally dominated

Saddle-point — effective single particle dynamics



Effective single-agent ensemble

Non-Markovian sfochastic process

pt+1)=pt)—ay (1+G)wsgn p(t) +6(t) +Jan()

t'<t

where (7(0)n(t)) =[1+G)'1+C)A+G") '],

with coloured noise, memory, self-consistent correlation & response functions

C, =(sgn p(1)sgn p(t")), =N">_ (sgn p,(t)sgn p,(1")
Jd -
Gtt'_ae(t,) <Sgllp(l‘)>* =N Ziaé?i(t') <Sgnpi(t)>

where <f> is an effective average involving P (p(0)), G, C.
Exact but non-trivial




Simulations & iterated theory

Initial bias p=.5: uncorrelated p=0: anti-correlated
) UL L llll ) || LI L) llll ||
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Open = simulations  Solid = numerical iteration of analytic effective agent equations
Galla & S



Solutions

to

Effective single agent equations

Any a: Numerically soluble for finite number of time-steps,
but increasingly computer-expensive as fincreases

o=>0,, . Analytically soluble for certain quantities
with ansatze whose breakdown signals o

o<a, : Not yet solved



Further ansatze for equilibrium analysis:

O=>0L,

Stationarity: C,.=C(t—t"), G, =G(t—1t")
Finite integrated response
Weak long term memory: lim, G, =0 for all finite '

==p Order parameters in stationary state
Persistent correlation function: Q =lim____ C(7)
Integrated response: y = ZTG(T)

Breakdown of theory: one of these assumptions violated



0.8
0.6
04 |

02 |

Persistent correlations

Correlated strategies:p: P(R, = R/,) =p

Simulations &
analytic theory

Batch

p=0: anti-correlated

p=0.5: uncorrelated

1

p=1:identical

p=0,0.1,..,0.9
bottom to top
Anti-corr. to highly corr.

4mm uncorrelated



Possible extensions

within econophysics

« Systems with more features but still
range-free

— I.e. more ‘local’ variables and couplings but
still global interactions

* Dynamical strategies: still need heterogeneity
 Liquidity providers: c.f ATP



More realistic extension of minority game?

Limit-order book

Agents place or remove orders: buy, sell, market. May be executed.
Speculators gain on price changes. Manufacturers must absorb — liquidity.

I 1

Price-line -
| | :
buy ﬁ | | sell
Current price (t But how do they choose
what to do?
c.f. Evaporation-deposition-annihilation Evolution of strategies?

Driven by individual attitudes,
co-operative actions, learning?



More generally

Dynamical generating functionals
Z = IDS DJ o(Equations of motion) o(constraints) Jacobian

Microscopic variables, all times Also generating term
Fast & slow exp{i(AS +uJ)}

microscopic “attempt” times in egns. of motion

Include real endogenous information and exogenous influences,
agent-differences & stochasticity/uncertainty

Micro — Macro-variables: multi-time




2. Networks retrieving information by queries

Peer-to-peer networks

« Computer connectivity networks

— Operational connections: e.g. file-sharing
» Distinct from physical connection network

— Nodes constantly leaving and joining the network
* Under churn

* Need fast file-finding

— Scale-free structure: p(k) ~ k™7
* Local search strategies scale sub-linearly with size



Can we devise
easily-implemented ‘networks under churn”
with power-law connectivily distributions ?



Preferential attachment
Barabasi-Albert

 Addition of a new node

— Assign to each node an attractiveness: Al < kl.

— Connect new node to m existing nodes chosen randomly
with probabilities proportional to their attractivenesses

— Needs information about connectivity of all nodes
* Growing network

~ Yields power-law distribution:  p(k) o< k™7
* Network under churn

— R K) decays faster than power-law



Local attachment
Bauke-S

« Addition of a new node, two-step procedure
— Pick any other node randomly: no preference
— Do not connect to that node!
— Connect to a nearest neighbour of that node
— Repeat mtimes

* Yields power-law connectivity for both growing
networks and networks under churn

* Needs only local information
c.f. Gnutella cache-ponging



P(k)

Cumulative degree distributions

Local attachment

Preferential attachment

10
1 g mgoo T T .
o o o BA < _ 8
o o m=38 ——0.21m+1.85
) \;{
Q L.
107°F P
m=2
< 30
A
107
1070 13-
4 B56-1) =
1 2 3 4 5 6 7 8 10° 10’ 10° 10° 10 10
k1/2 k
Exponential Power-law

Both are for networks of mean connectivity m under churn

Hereafter consider just local attachment



Local attachment
networks

Mean attractiveness
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Conclusion so far

» 2-stage local attachment

— Gives power-law scale-free networks
» With their search-speed advantages

— Without needing data on all peers

* Recall
— (i) random unbiased connection to peer A
— (ii) ask who are his neighbours
— (iii) connect randomly without bias to one of them

» Offers possibilities as a practical protocol



Topological transitions

 Networks under churn

— E.g. At each time step:
* Prob r: remove randomly chosen node
* Prob 1: add new node and from it /77 new links
* Choose the nodes to connect to randomly with
attractiveness

A, = k+&(k,k®); g(k,k*):{kk fm lfk—m}
k * else



Power-law or exponential

(a) exponential (b) power-law
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Phase diagram

0 0.2 0.4 0.6 0.8 1
r

Similar phase diagrams for other churn models



Analysis

m
6, ,, +<—A>{Ak_1pk_1 —-Apt+rk+)p,  —(k+1)p =0;

<M=;&m

Can calculate behaviour of p,

Define * kK'<k.* : power-law
* k*>k_.* : exponential with
Jok = <A> — <k> power-law corrections
'y Px =Cka18k
Transition ks Bt @t AN =D
<K, . =1, d=1—m— <
_ S m—(A)r
k* = m(l 7") — oo as approach transition
¢ 2
r(l_r) k>k,: g=_MBZDTRTA=rT)

m(l—r)—k*

L, G-n)
(1-r)

as k* — oo




Another example

At each step:

Insert /m new edges with probability p
Rewire m links randomly with probability g

Add new node (/mlinks) with probability r

Preferential attachment

p+q+r=1

1

0.8

0.6f

0.4}

0.2}

exponential

degree distribution

power—law

degree distribution

0.2 0.4 0.6 0.8




Conclusion

Topological transitions as attachment rules varied

Negative perturbations of linear attractiveness tend to stabilize power
laws

In view of ubiquity of power-laws in nature, do such pertubations occur
in real world networks?



